Presentation On AC Fundamentals

At

Prepared By :-
Guided By :-
Agrawal Ankush V.
130400107001
Raj Kapadia
Madnani Hemant B.
130400107025

An alternating current such as that produced by a generator has no direction in the sense that direct current has. The magnitudes vary sinusoidally with time as given by:

> AC-voltage and current $\begin{aligned} & \mathrm{E}=\mathrm{E}_{\max } \sin \\ & i=\mathrm{i}_{\max } \theta \sin \theta\end{aligned}$

The coordinate of the emf at any instant is the value of $E_{\max } \sin \theta$. Observe for incremental angles in steps of 45°. Same is true for i.

The average current in a cycle is zero - half + and half. But energy is expended, regardless of direction. So the "root-mean-square" value is useful. The RMS value $I_{r m s}$ is sometimes called the effective current $l_{\text {eff }}$.

One effective ampere is that ac current for which the power is the same as for one ampere of dc current.

Effective current: $i_{\text {eff }}=0.707 i_{\text {max }}$

One effective volt is that ac voltage that gives an effective ampere through a resistance of one ohm.

Effective voltage: $V_{\text {eff }}=0.707 V_{\max }$

Example 1: For a particular device, the house ac voltage is $120-\mathrm{V}$ and the ac current is 10 A . What are their maximum values?

$$
i_{\text {eff }}=0.707 i_{\max }
$$

$$
i_{\max }=\frac{i_{e f e}}{0.707}=\frac{10 \mathrm{~A}}{0.707}
$$

$$
V_{\max }=\frac{V_{e f e}}{0.707}=\frac{120 \mathrm{~A}}{0.707}
$$

$$
i_{\max }=14.14 \mathrm{~A}
$$

$$
V_{\max }=170 \mathrm{~V}
$$

The ac voltage actually varies from +170 V to -170 V and the current from 14.1 A to -14.1 A.

Pure Resistance in AC Circuits

Voltage and current are in phase, and Ohm's law applies for effective currents and voltages.

A Pure Inductor in AC Circuit

The voltage peaks 90° before the current peaks. One builds as the other falls and vice versa.

A Pure Capacitor in AC Circuit

The voltage peaks 90° after the current peaks. One builds as the other falls and vice versa.

Memory Aid for AC Elements

An old, but very effective, way to remember the phase differences for inductors and capacitors is:

"E LI" the "iC E" Man

Emf E is before current i in inductors L; Emf E is after current i in capacitors C .

Frequency and AC Circuits

Resistance R is constant and not affected by f.

Inductive Reactance X_{L} varies directly with frequency as expected since $\mathrm{E} \propto \Delta i / \Delta t$.

$$
X_{L}=2 \pi f L
$$

Capacitive reactance X_{c} varies inversely with f since rapid ac allows little time for charge to build up on capacitors.

$$
X_{C}=\frac{1}{2 \pi f C}
$$

Resonant Frequency

Because inductance causes the voltage to lead the current and capacitance causes it to lag the current, they tend to cancel each other out.

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=R
$$

$$
f_{r}=\frac{1}{2 \pi \sqrt{L C}}
$$

Calculating Total Source Voltage

$$
V_{T}=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}
$$

$$
\tan \phi=\frac{V_{L}-V_{C}}{V_{R}}
$$

Now recall that:

$$
V_{R}=i R ; \quad V_{L}=i X_{L} ; \text { and } V_{C}=i V_{C}
$$

Substitution into the above voltage equation gives:

$$
V_{T}=i \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

